Strong Γ-ideal convergence in a probabilistic normed space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lacunary Ideal Convergence in Probabilistic Normed Space

Abstract. The aim of this paper is to study the notion of lacunary I-convergence in probabilistic normed spaces as a variant of the notion of ideal convergence. Also lacunary I-limit points and lacunary I-cluster points have been defined and the relation between them has been established. Furthermore, lacunary Cauchy and lacunary I-Cauchy sequences are introduced and studied. Finally, we provid...

متن کامل

Menger probabilistic normed space is a category topological vector space

In this paper, we formalize the Menger probabilistic normed space as a category in which its objects are the Menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. Then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. So, we can easily apply the results of topological vector spaces...

متن کامل

On Ideal Convergence of Double Sequences in Probabilistic Normed Spaces

One of the generalizations of statistical convergence is I-convergence which was introduced by Kostyrko et al. [12]. In this paper, we define and study the concept of I-convergence, I∗-convergence, I-limit points and I-cluster points of double sequences in probabilistic normed space. We discuss the relationship between I2-convergence and I ∗ 2 -convergence, i.e., we show that I ∗ 2 -convergence...

متن کامل

Strong $I^K$-Convergence in Probabilistic Metric Spaces

In this paper we introduce strong $I^K$-convergence of functions which is common generalization of strong $I^*$-convergence of functions in probabilistic metric spaces. We also define and study strong $I^{K}$-limit points of functions in same space.

متن کامل

menger probabilistic normed space is a category topological vector space

in this paper, we formalize the menger probabilistic normed space as a category in which its objects are the menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. so, we can easily apply the results of topological vector spaces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2016

ISSN: 0166-8641

DOI: 10.1016/j.topol.2015.12.035